.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/demo_agents/video_plot_a2c.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_demo_agents_video_plot_a2c.py: ============================================== A demo of A2C algorithm in PBall2D environment ============================================== Illustration of how to set up an A2C algorithm in rlberry. The environment chosen here is PBALL2D environment. .. video:: ../../video_plot_a2c.mp4 :width: 600 .. GENERATED FROM PYTHON SOURCE LINES 12-33 .. code-block:: python3 from rlberry_research.agents.torch import A2CAgent from rlberry_research.envs.benchmarks.ball_exploration import PBall2D from gymnasium.wrappers import TimeLimit env = PBall2D() env = TimeLimit(env, max_episode_steps=256) n_timesteps = 50_000 agent = A2CAgent(env, gamma=0.99, learning_rate=0.001) agent.fit(budget=n_timesteps) env.enable_rendering() observation, info = env.reset() for tt in range(200): action = agent.policy(observation) observation, reward, terminated, truncated, info = env.step(action) done = terminated or truncated video = env.save_video("_video/video_plot_a2c.mp4") .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_demo_agents_video_plot_a2c.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: video_plot_a2c.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: video_plot_a2c.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_