.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/demo_agents/video_plot_ppo.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_demo_agents_video_plot_ppo.py: ============================================== A demo of PPO algorithm in PBall2D environment ============================================== Illustration of how to set up an PPO algorithm in rlberry. The environment chosen here is PBALL2D environment. .. video:: ../../video_plot_ppo.mp4 :width: 600 .. GENERATED FROM PYTHON SOURCE LINES 12-31 .. code-block:: python3 from rlberry_research.agents.torch import PPOAgent from rlberry_research.envs.benchmarks.ball_exploration import PBall2D env = PBall2D() n_steps = 3e3 agent = PPOAgent(env) agent.fit(budget=n_steps) env.enable_rendering() observation, info = env.reset() for tt in range(200): action = agent.policy(observation) observation, reward, terminated, truncated, info = env.step(action) done = terminated or truncated video = env.save_video("_video/video_plot_ppo.mp4") .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_demo_agents_video_plot_ppo.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: video_plot_ppo.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: video_plot_ppo.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_