Note
Go to the end to download the full example code
A demo of Gridworld environment with ValueIterationAgent¶
Illustration of the training and video rendering ofValueIteration Agent in Gridworld environment.
from rlberry_scool.agents.dynprog import ValueIterationAgent
from rlberry_scool.envs.finite import GridWorld
env = GridWorld(7, 10, walls=((2, 2), (3, 3)))
agent = ValueIterationAgent(env, gamma=0.95)
info = agent.fit()
print(info)
env.enable_rendering()
observation, info = env.reset()
for tt in range(50):
action = agent.policy(observation)
observation, reward, terminated, truncated, info = env.step(action)
done = terminated or truncated
if done:
# Warning: this will never happen in the present case because there is no terminal state.
# See the doc of GridWorld for more informations on the default parameters of GridWorld.
break
# Save the video
env.save_video("_video/video_plot_gridworld.mp4", framerate=10)
Total running time of the script: (0 minutes 0.000 seconds)