rlberry.envs
.PipelineEnv¶
- rlberry.envs.PipelineEnv(env_ctor, env_kwargs, wrappers)[source]¶
Environment defined as a pipeline of wrappers and an environment to wrap.
- Parameters:
- env_ctor: environment class
- env_kwargs: dictionary
kwargs fed to the environment
- wrappers: list of tuple (wrapper, wrapper_kwargs)
list of tuple (wrapper, wrapper_kwargs) to be applied to the environment. The list [wrapper1, wrapper2] will be applied in the order wrapper1(wrapper2(env))
Examples
>>> from rlberry.envs import PipelineEnv >>> from rlberry.envs import gym_make >>> from rlberry.wrappers import RescaleRewardWrapper >>> >>> env_ctor, env_kwargs = PipelineEnv, { >>> "env_ctor": gym_make, >>> "env_kwargs": {"id": "Acrobot-v1"}, >>> "wrappers": [(RescaleRewardWrapper, {"reward_range": (0, 1)})], >>> } >>> eval_env = (gym_make, {"id":"Acrobot-v1"}) # unscaled env for evaluation