Note
Go to the end to download the full example code
A demo of PBALL2D environment¶
Illustration of PBall2D environment
import numpy as np
from rlberry_research.envs.benchmarks.ball_exploration import PBall2D
p = 5
A = np.array([[1.0, 0.1], [-0.1, 1.0]])
reward_amplitudes = np.array([1.0, 0.5, 0.5])
reward_smoothness = np.array([0.25, 0.25, 0.25])
reward_centers = [
np.array([0.75 * np.cos(np.pi / 2), 0.75 * np.sin(np.pi / 2)]),
np.array([0.75 * np.cos(np.pi / 6), 0.75 * np.sin(np.pi / 6)]),
np.array([0.75 * np.cos(5 * np.pi / 6), 0.75 * np.sin(5 * np.pi / 6)]),
]
action_list = [
0.1 * np.array([1, 0]),
-0.1 * np.array([1, 0]),
0.1 * np.array([0, 1]),
-0.1 * np.array([0, 1]),
]
env = PBall2D(
p=p,
A=A,
reward_amplitudes=reward_amplitudes,
reward_centers=reward_centers,
reward_smoothness=reward_smoothness,
action_list=action_list,
)
env.enable_rendering()
for ii in range(5):
env.step(1)
env.step(3)
env.render()
video = env.save_video("_video/video_plot_pball.mp4")
Total running time of the script: (0 minutes 0.000 seconds)