A demo of rooms environment

Illustration of NRooms environment

from rlberry_research.envs.benchmarks.grid_exploration.nroom import NRoom
from rlberry_scool.agents.dynprog import ValueIterationAgent

env = NRoom(
    nrooms=9,
    remove_walls=False,
    room_size=9,
    initial_state_distribution="center",
    include_traps=True,
)
horizon = env.observation_space.n

agent = ValueIterationAgent(env, gamma=0.999, horizon=horizon)
print("fitting...")
info = agent.fit()
print(info)

env.enable_rendering()

for _ in range(10):
    observation, info = env.reset()
    for tt in range(horizon):
        # action = agent.policy(observation)
        action = env.action_space.sample()
        observation, reward, terminated, truncated, info = env.step(action)
        done = terminated or truncated
        if done:
            break
env.render()
video = env.save_video("_video/video_plot_rooms.mp4")

Total running time of the script: (0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery