rlberry.manager
.MultipleManagers¶
- class rlberry.manager.MultipleManagers(max_workers: int | None = None, parallelization: str = 'process', mp_context='spawn')[source]¶
Bases:
object
Class to fit multiple ExperimentManager instances in parallel with multiple threads.
- Parameters:
- max_workers: int, default=None
max number of workers (ExperimentManager instances) fitted at the same time.
- parallelization: {‘thread’, ‘process’}, default: ‘process’
Whether to parallelize agent training using threads or processes.
- mp_context: {‘spawn’, ‘fork’, ‘forkserver’}, default: ‘spawn’.
Context for python multiprocessing module. Warning: If you’re using JAX or PyTorch, it only works with ‘spawn’.
If running code on a notebook or interpreter, use ‘fork’.
- Attributes:
- managers
Methods
append
(experiment_manager)Append new ExperimentManager instance.
run
([save])Fit ExperimentManager instances in parallel.
save
()Pickle ExperimentManager instances and saves fit statistics in .csv files.
- append(experiment_manager)[source]¶
Append new ExperimentManager instance.
- Parameters:
- experiment_managerExperimentManager